

ANNUAL WATER QUALITY REPORT

REPORTING YEAR 2020

Presented By
Wildwood Water Utility

Quality First

Once again, we are pleased to present our annual water quality report covering all testing performed between January 1 and December 31, 2020. As in years past, we are committed to delivering the best-quality drinking water possible. To that end, we remain vigilant in meeting the challenges of new regulations, source water protection, water conservation, and community outreach and education, while continuing to serve the needs of all our water users. Thank you for allowing us the opportunity to serve you and your family.

We encourage you to share your thoughts with us on the information contained in this report. After all, well-informed customers are our best allies.

For more information about this report, or for any questions related to your drinking water, please call Michael McIntyre, Wildwood Water Utility's Director, at (609) 846-0600.

Community Participation

You are invited to participate in our public forum and voice your concerns about your drinking water. We meet the second and fourth Wednesday of each month, beginning at 5 p.m. at City Hall, 4400 New Jersey Ave., Wildwood, NJ.

Where Does My Water Come From?

Our water source is from wells at the Rio Grande Pumping Station located on Rt.47 in Middle Twp. These wells draw water from the Estuarine, Cohansay, and Kirkwood aquifers.

The New Jersey Department of Environmental Protection (NJDEP) has completed and issued the Source Water Assessment Report and Summary for this public water system, which is available at www.state.nj.us/dep/watersupply/swap/index.html, or by contacting NJDEP's Bureau of Safe Drinking Water at (609) 292-5550 or watersupply@dep.nj.gov. You may also contact your public water system at (609) 846-0600.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/safewater/lead.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, in some cases, radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife; Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban storm-water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses; Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban storm-water runoff, and septic systems; Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

Susceptibility Ratings for Wildwood City Water Department Sources

The table below illustrates the susceptibility ratings for the seven contaminant categories (and radon) for each source in the system. The table provides the number of wells and intakes that rated high (H), medium (M), or low (L) for each contaminant category. For susceptibility ratings of purchased water, refer to the specific water system's source water assessment report.

The seven contaminant categories are defined at the bottom of this page. DEP considered all surface water highly susceptible to pathogens; therefore, all intakes received a high rating for the pathogen category. For the purpose of Source Water Assessment Program, radionuclides are more of a concern for groundwater than surface water. As a result, surface water intakes' susceptibility to radionuclides was not determined and they all received a low rating.

If a system is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water. The rating reflects the potential for contamination of source water, not the existence of contamination.

Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels. As a result of the assessments, DEP may customize (change existing) monitoring schedules based on the susceptibility ratings.

SOURCES	PATHOGENS			NUTRIENTS			PESTICIDES			VOLATILE ORGANIC COMPOUNDS			INORGANICS			RADIONUCLIDES			RADON			DISINFECTION BYPRODUCT PRECURSORS				
	H	M	L	H	M	L	H	M	L	H	M	L	H	M	L	H	M	L	H	M	L	H	M	L		
Wells - 17			17			17			17			17			17			17			17			17	17	
GUID-0																										
Surface water intakes-0																										

Pathogens: Disease-causing organisms such as bacteria and viruses. Common sources are animal and human fecal wastes.

Nutrients: Compounds, minerals and elements that aid growth, that are both naturally occurring and man-made. Examples include nitrogen and phosphorus.

Volatile Organic Compounds: Man-made chemicals used as solvents, degreasers, and gasoline components. Examples include benzene, methyl tertiary butyl ether (MTBE), and vinyl chloride.

Pesticides: Man-made chemicals used to control pests, weeds, and fungus. Common sources include land application and manufacturing centers of pesticides. Examples include herbicides such as atrazine, and insecticides such as chlordane.

Inorganics: Mineral-based compounds that are both naturally occurring and man-made. Examples include arsenic, asbestos, copper, lead, and nitrate.

Radionuclides: Radioactive substances that are both naturally occurring and man-made. Examples include radium and uranium.

Radon: Colorless, odorless, cancer-causing gas that occurs naturally in the environment. For more information go to www.nj.gov/dep/rpp/radon/index.htm or call (800) 648-0394.

Disinfection Byproduct Precursors: A common source is naturally occurring organic matter in surface water. Disinfection byproducts are formed when the disinfectants (usually chlorine) used to kill pathogens react with dissolved organic material (for example, leaves) present in surface water.

About Our Violations

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not your drinking water meets health standards. During the first quarter of 2020, we did not monitor or test for THMs, HAA5s, PFNAs, 1,2,3TCP, DBCP, or EDB, and therefore cannot be sure of the quality of your drinking water during that time. During the month of July 2020, we did not complete all monitoring or testing for Total Coliform (tested 119 samples, where 120 samples are required), and therefore cannot be sure of the quality of your drinking water during that time. Wildwood Water Utility has been ensured by its certified laboratory that they will continue to sample as well as testing the correct number of samples.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule. And, the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The State recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

We participated in the 4th stage of the U.S. EPA's Unregulated Contaminant Monitoring Rule (UCMR4) program by performing additional tests on our drinking water. UCMR4 sampling benefits the environment and public health by providing the U.S. EPA with data on the occurrence of contaminants suspected to be in drinking water, in order to determine if U.S. EPA needs to introduce new regulatory standards to improve drinking water quality. Unregulated contaminant monitoring data are available to the public, so please feel free to contact us if you are interested in obtaining this information. If you would like more information on the U.S. EPA's Unregulated Contaminants Monitoring Rule, please call the Safe Drinking Water Hotline at (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health-care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791.

REGULATED SUBSTANCES ¹							
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Alpha Emitters (pCi/L)	2017	15	0	1.006	0.684–1.49	No	Erosion of natural deposits
Arsenic (ppb)	2020	5	0	<0.0011	NA	No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes
Barium (ppm)	2020	2	2	0.0058	0.0046–0.0093	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Chlorine (ppm)	2020	[4]	[4]	0.27	0.18–0.53	No	Water additive used to control microbes
Combined Radium (pCi/L)	2017	5	0	0.695	0.505–0.805	No	Erosion of natural deposits
Dibromochloropropane {DBCP} ² (ppt)	2020	200	0	ND	ND	Yes ²	Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards
Ethylene Dibromide [EDB] ² (ppt)	2020	50	0	ND	ND	Yes ²	Discharge from petroleum refineries
Haloacetic Acids [HAAs] ² (ppb)	2020	60	NA	4	0.2–6.8	Yes ²	By-product of drinking water disinfection
Mercury [inorganic] (ppb)	2020	2	2	<0.079	ND–0.09	No	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland
Perfluorononanoic Acid [PFNA] ² (ppt)	2020	13	NA	ND	ND	Yes ²	Discharge from industrial chemical factories
Selenium (ppb)	2020	50	50	<0.0015	NA	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines
TTHMs [Total Trihalomethanes] ² (ppb)	2020	80	NA	46.4	9.6–60.3	Yes ²	By-product of drinking water disinfection
Total Coliform Bacteria ² (positive samples)	2020	5%/mo.	NA	NA	0-1.6%	Yes ²	Naturally present in the environment

Tap Water Samples Collected for Copper and Lead Analyses from Sample Sites throughout the Community

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	AMOUNT DETECTED (90TH %ILE)	SITES ABOVE AL/ TOTAL SITES	VIOLATION	TYPICAL SOURCE
Copper (ppm)	2020	1.3	1.3	0.12	0/30	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead (ppb)	2020	15	0	5	0/30	No	Corrosion of household plumbing systems; Erosion of natural deposits

SECONDARY SUBSTANCES

Substance (Unit of Measure)	Year Sampled	RUL	MCLG	Amount Detected	Range Low-High	Exceedance	Typical Source
Chloride (ppm)	2020	250	NA	52	28–68	No	Runoff/leaching from natural deposits
Hardness [as CaCO ₃] (ppm)	2020	250	NA	76	52–110	No	Naturally occurring
Iron ³ (ppb)	2020	300	NA	259	31–820	Yes	Naturally occurring
Manganese ⁴ (ppb)	2020	50	NA	26	18–88	Yes	Leaching from natural deposits
pH (Units)	2020	6.5–8.5	NA	8	7.8–8.2	No	Naturally occurring
Sodium (ppm)	2020	50	NA	38	17–45	No	Naturally occurring
Sulfate (ppm)	2020	250	NA	14	5.8–27	No	Runoff/leaching from natural deposits
Total Dissolved Solids (ppm)	2020	500	NA	221	190–240	No	Runoff/leaching from natural deposits
Zinc (ppm)	2020	5	NA	0.1	0.07–0.12	No	Runoff/leaching from natural deposits; Industrial wastes

OTHER UNREGULATED SUBSTANCES

Substance (Unit of Measure)	Year Sampled	Amount Detected	Range Low-High	Violation	Typical Source
1,2,3-Trichloropropane [123TCP] ² (ppb)	2020	ND	ND	Yes ²	TCP has been used as a paint or varnish remover, a cleaning and degreasing agent, and a solvent

¹Under a waiver granted on December 30, 1998, by the State of New Jersey Department of Environmental Protection, our system does not have to monitor for synthetic organic chemicals/pesticides because several years of testing have indicated that these substances do not occur in our source water. The SDWA regulations allow monitoring waivers to reduce or eliminate the monitoring requirements for asbestos, volatile organic chemicals and synthetic organic chemicals. Our system received monitoring waivers for synthetic organic chemicals and asbestos.

²See "About Our Violations"

³The recommended upper limit for iron is based on an unpleasant taste of the water and staining of laundry. Iron is an essential nutrient, but some people who drink water with iron levels well above the recommended upper limit could develop deposits of iron in a number of organs of the body.

⁴The recommended upper limit for manganese is based on the staining of laundry. Manganese is an essential nutrient, and toxicity is not expected from high levels that would be encountered in drinking water.

Assessment Update

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms, indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

During the past year, we were required to conduct a Level 1 assessment, which was completed, and we were not required to take any corrective actions. During the past year, we were also required to conduct a Level 2 assessment, which was completed, and we were not required to take any corrective actions.

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

pCi/L (picocuries per liter): A measure of radioactivity.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

ppt (parts per trillion): One part substance per trillion parts water (or nanograms per liter).

RUL (Recommended Upper Limit): These standards are developed to protect aesthetic qualities of drinking water and are not health based.